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Abstract—Traditional Kubernetes networking struggles to
meet the escalating demands of AI/ML and evolving Telco in-
frastructure. This paper introduces Kubernetes Network Drivers
(KNDs), a transformative, modular, and declarative architec-
ture designed to overcome current imperative provisioning and
API limitations. KNDs integrate network resource management
into Kubernetes’ core by utilizing Dynamic Resource Alloca-
tion (DRA), Node Resource Interface (NRI) improvements, and
upcoming OCI Runtime Specification changes. Our DraNet
implementation demonstrates declarative attachment of network
interfaces, including Remote Direct Memory Access (RDMA) de-
vices, significantly boosting high-performance AI/ML workloads.
This capability enables sophisticated cloud-native applications
and lays crucial groundwork for future Telco solutions, fostering
a ”galaxy” of specialized KNDs for enhanced application delivery
and reduced operational complexity.

Index Terms—Kubernetes, Networking, Distributed Systems,
Telco, Telecommunications, AI/ML, Declarative Networking, Dy-
namic Resource Allocation

I. INTRODUCTION

The evolution of Kubernetes has been driven by the need to
manage increasingly complex and diverse workloads. While
the initial focus was on stateless applications, the platform is
now a cornerstone for stateful, performance-sensitive tasks,
including large-scale AI/ML training and inference. These
workloads demand direct, low-latency access to specialized
hardware, such as GPUs and RDMA-capable network in-
terfaces. However, the mechanisms originally designed for
networking and management of hardware resources, such as
the Container Networking Interface specification (CNI) [1] and
the Kubernetes extended resources (Device Plugins) [2], were
not designed for the intricate requirements of this new class of
hardware, leading to significant challenges in expressiveness,
composability, and operational simplicity.

The history of Kubernetes networking, illustrated in Figure
1, shows a rapid proliferation of projects attempting to solve
various networking challenges.

Notably, many of the projects specifically targeting ad-
vanced networking use cases for telecommunications (e.g.,
CNI-Genie, DANM, ovn4nfv-k8s-plugin) have since been
abandoned or archived. This has left the ecosystem dominated
by two primary architectural patterns: large, monolithic ”thick
plugins” like Calico [3] or Cilium [4] that implement the

Fig. 1. Timeline of Key Kubernetes Networking Projects.

entirety of network functionality, and meta-plugins like Multus
[5], which provide a multiplexing layer to attach multiple,
simple CNI interfaces. Neither of these approaches adequately
addresses the need for expressive, topology-aware manage-
ment of high-performance hardware.

This paper identifies the architectural limitations of these
legacy models and proposes a new paradigm: the Kuber-
netes Network Driver (KND) Model. The KND model shifts
away from these solutions towards a system of independent,
composable drivers that leverage first-class Kubernetes APIs.
We demonstrate that by using Dynamic Resource Allocation
(DRA) [6] for expressive resource claims and the Node
Resource Interface (NRI) [7] for runtime composability, we
can build a more robust, efficient, and simpler system for high-
performance networking.

To validate this model, we introduce DraNet [8], a reference
implementation of the KND model. It is designed to man-
age host network interfaces as dynamic, first-class resources
within Kubernetes, including specialized hardware like RDMA
devices.

II. BACKGROUND AND MOTIVATION

In the early days of Kubernetes, the Container Network
Interface (CNI) was chosen over Docker’s Container Network
Model (CNM) for its simplicity and flexibility [9]. CNI
provided a focused interface for network plugins, allowing a
diverse ecosystem of networking solutions to flourish. How-
ever, as user demands grew for features like network policies,
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Fig. 2. Pod Startup Networking Sequence with CNI

service discovery and multiple interfaces, the simple CNI
specification led to the rise of ”thick plugins.”

The Kubernetes community recognized the shortcomings
of the CNI model for advanced use cases. Discussions
within SIG-Network led to formal proposals to address multi-
networking natively, most notably through KEP-3698 ”Multi-
Network for Pods” [11] and the subsequent KEP-4410 ”KNI:
Kubernetes Network Interface” [12]. These enhancement pro-
posals accurately identified the core problem and explored
potential solutions. However, neither initiative progressed to a
formal implementation, leaving a significant architectural gap
in the platform.

This lack of a native solution compelled the community to
adopt workarounds extended Kubernetes networking via Cus-
tom Resource Definitions (CRDs) and complex node agents,
often using a shim CNI binary that delegated work to a long-
running daemon. This pattern, while functional, introduced
latency and a dependency requiring Kubernetes API server
lookups during the critical pod startup path, as shown in Figure
2. It also creates a critical lifecycle mismatch between the CNI
binary on disk and its corresponding daemon. The container
runtime can execute the binary at any time, but if the daemon
process is restarting or has crashed, the operation will fail after
a lengthy timeout due to this lack of coordination.

The problem was amplified when exposing specialized
hardware like RDMA NICs. The standard solution involved
a fragile composition of disparate components with a more
complex startup sequence as shown in Figure 3: a CNI meta-
plugin like Multus, a hardware-specific Device Plugin and a
dedicated CNI plugin to configure the device. This approach
suffers from several fundamental flaws.

First, as CNI is a property delegated to the container runtime
[10], it fundamentally lacks the expressiveness needed to in-
fluence the Kubernetes scheduler. This architectural separation
makes it impossible for the control plane to make intelligent

Fig. 3. Pod Startup Networking Sequence with CNI and Device Plugin

placement decisions based on network topology or capabilities.
This limitation is typically compensated for through out-of-
band mechanisms, such as daemons that discover network
features and label node objects, or by using the Device Plugin
framework itself as a proxy for network resources.

However, this leads to the second flaw: the Device Plugin
framework is purely quantitative, advertising a count of re-
sources, and is incapable of expressing the rich qualitative at-
tributes or topological relationships (like PCI locality) essential
for performance. Third, there is a severe scope mismatch, as
device plugins operate on a per-container basis, while network
interfaces are a pod-level resource. Finally, there is no native
synchronization between the device plugin’s allocation and
the CNI plugin’s configuration, leading to complex and brittle
implementations that rely on passing state through annotations.

III. THE KUBERNETES NETWORK DRIVER (KND) MODEL

To address these limitations, we propose the Kubernetes
Network Driver (KND) model, built upon two modern, first-
class Kubernetes and Controller Runtime APIs: Dynamic
Resource Allocation (DRA) and the Node Resource Interface
(NRI).

A. Dynamic Resource Allocation (DRA): Expressive,
Topology-Aware Scheduling

DRA is the designated successor to the device plugin
framework, designed to manage complex hardware resources
natively within Kubernetes . It overcomes the limitations of
its predecessor by introducing several key features:

• Richer Resource Profiles: Drivers can expose any re-
source, be it physical, virtual, or purely logical, with
both quantitative and qualitative attributes. This allows
a driver, for example, to publish not just the existence
of a physical NIC, but also its NUMA node and PCI
root address. Crucially, the same mechanism can be used



Fig. 4. Pod Startup Networking Sequence with KND

to model more abstract resources, such as an SR-IOV
Virtual Function or even a provisioned network service
like an MPLS tunnel, making them discoverable and
schedulable by Kubernetes.

• Expressive User Intent: Users request resources via
ResourceClaim objects, using the powerful Common Ex-
pression Language (CEL) [13] for selection. This enables
topology-aware scheduling, where a user can request a
GPU and a NIC that share the same PCI root, allowing
the Kubernetes scheduler to find a node that satisfies
this constraint, thereby eliminating a major performance
bottleneck.

• Decoupled Lifecycle and Embedded Parameters: DRA
introduces a NodePrepareResources hook, allowing a
driver to perform slow setup operations before the pod’s
critical startup phase. Crucially, the ResourceClaim object
can carry opaque configuration parameters directly to the
driver during this hook. This mechanism enables a ”push”
model, where all necessary information is provided up-
front, completely removing the need for the driver to
connect back to the API server and thereby eliminating
a major source of latency and potential race conditions,
shown in Figure 4.

B. Node Resource Interface (NRI): Composable Runtime
Hooks

NRI provides a generic, event-driven plugin architecture that
allows multiple independent drivers to hook into the container
runtime lifecycle. This solves the composability problem of
CNI chaining, where multiple plugins are executed in a rigid,
sequential pipeline. With NRI, different drivers (e.g., a GPU
driver and a network driver) can subscribe to pod lifecycle
events (like RunPodSandbox or CreateContainer) and act in
parallel and without direct dependencies. This enables a clean
separation of concerns, where a driver can handle network

Fig. 5. Classic CNI and Device Plugin Architecture

Fig. 6. Kubernetes Network Driver Architecture

attachment at the pod level while the other driver handles GPU
setup at the container level. Crucially, these hooks are not
just triggers; they are context-aware, providing the driver with
all the necessary information to perform its operations. For
instance, recent enhancements to the NRI specification ensure
that plugins receive the pod’s full network state, including its
assigned IP addresses [14].

C. OCI Spec Simplification

Further simplification is achieved by leveraging recent addi-
tions to the Open Container Initiative (OCI) [15] runtime spec-
ification that allow for the declarative attachment of network
interfaces [16]. This allows network drivers to simply instruct
the container runtime to move a prepared interface into the
pod’s namespace, offloading the privileged, low-level netlink
operations to the runtime itself and reducing the capabilities
required by the driver.

IV. DRANET: A REFERENCE IMPLEMENTATION

To provide a concrete example of the KND model, we
developed DraNet, an Open Source reference implementation
designed to manage the lifecycle of entire network interfaces
as first-class Kubernetes resources. This framework is capable
of provisioning any raw network device, from standard host
interfaces to specialized high-performance RDMA hardware,
through the same native Kubernetes APIs.
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apiVersion: 
resource.k8s.io/v1alpha3
kind: ResourceSlice
…
spec:
    devices:
    - basic:
        attributes:
          vpc:
            string: "blue"
          encapsulation:
            string: ether
          ip:
            string: 169.254.123.1/24

apiVersion: 
resource.k8s.io/v1alpha3
kind: ResourceSlice
…
spec:
    devices:
    - basic:
        attributes:
          vpc:
            string: "green"
          encapsulation:
            string: ether
          ip:
            string: 169.254.123.2/24

Fig. 7. DraNet Deployment

A. Architectural Simplicity and Operational Overhead

A key advantage of the KND model demonstrated by
DraNet is the drastic reduction in operational complexity. The
traditional model (Figure 5) for RDMA required a fragile,
three-component chain (e.g., Multus + SR-IOV Device Plugin
+ RDMA CNI).

By contrast, the KND model enables a system of indepen-
dent, composable drivers (Figure 6). When used for GPU-
aligned networking, the setup involves only two components:

1) The NVIDIA DRA GPU Driver [17]: Manages the GPU
lifecycle.

2) The DraNet Driver: Manages the network resource life-
cycle.

Both drivers interact with the same standard Kubernetes API
in parallel, without direct dependencies. This architectural pu-
rity simplifies installation, reduces potential points of failure,
and makes the system easier to debug and maintain.

B. End-to-End Workflow

The DraNet workflow exemplifies the KND model’s ele-
gance (Figure 7):

1) Discovery: The DraNet daemon on each node discovers
network interfaces and their topological attributes (PCI
root, NUMA node) and publishes them as ResourceS-
lices API objects.

2) Claiming & Scheduling: A user creates a Resource-
Claim API object requesting an RDMA NIC. The Ku-
bernetes scheduler, using the rich attributes provided by
DraNet, finds an optimal node for placement.

3) Preparation (DRA Hook): The kubelet calls NodePre-
pareResources. DraNet prepares the specific device and
caches the user’s configuration.

4) Attachment & Configuration (NRI Hooks): During
RunPodSandbox, DraNet moves the network interface
into the pod’s namespace. During the subsequent Cre-
ateContainer hook, it presents the required RDMA
character devices (e.g., /dev/infiniband/uverbsN) to the
container.

This clean separation ensures pod-level network resources
are handled distinctly from container-level device access, fully
realizing the KND model’s design goals.

V. PERFORMANCE EVALUATION

To validate the performance benefits of the topology-aware
scheduling enabled by the KND model, we conducted a series
of benchmarks on Google Cloud. The experiments were de-
signed to measure two key aspects: the operational efficiency
of the model via pod startup latency, and the application-
level network performance under both optimal and suboptimal
hardware configurations.

A. Experiment Setup

• Hardware and Software: The testbed consisted of two
Google Cloud nodes of type a4-highgpu-8g. Each node
is equipped with eight NVIDIA B200 GPUs and eight
Mellanox RoCE NICs. The nodes run Google Kubernetes
Engine (GKE) version v1.33.1-gke.1744000 with the
DynamicResourceAllocation feature gate enabled [18].

• Workloads and Experimental Conditions: The core of
our experiment involved comparing two distinct work-
load configurations, each repeated 100 times to ensure
statistical significance.

1) Topologically Aligned: This configuration used one
ResourceClaimTemplate for the GPU and another
for the RDMA NIC. The ResourceClaimTemplate
uses a CEL selector to request an RDMA NIC that
is known to be on the same PCI root as the requested
GPU (e.g., gpu0rdma0 for GPU 0).

2) Topologically Unaligned (High Variance): This
configuration used the extended resources via the
device plugin for the GPU request. It explicitly
requests a specific RDMA NIC via ResourceClaim
in order to guarantee the communications between
both nodes. However, the GPU is requested via the
traditional, non-DRA-aware device plugin mecha-
nism. Since the device plugin has no context of the
network resource claim, it randomly assigns one of
the eight available GPUs on the node. This creates
high performance variance, as there is only a 1-in-8
chance that the allocated GPU will be topologically
aligned with the requested NIC.

• Methodology: For both configurations, a script deployed
the StatefulSet with a Headless Service, waited for pod
readiness, executed the benchmarks, and then deleted
the StatefulSet. The NCCL tests [19] (all gather and
all reduce) were run with robust parameters (-b 8 -e 8G -f
2 -n 100 -w 50). Each test process was configured to use
only a single GPU and its corresponding single network
interface (-g 1). This design choice is critical to isolate
the performance of the inter-node RDMA network fabric.
If multiple GPUs on the same node were used, NCCL
would automatically prefer the much faster intra-node
NVLink interconnect for communication, which would



Fig. 8. NCCL All Gather Benchmark

Fig. 9. NCCL All Reduce Benchmark

mask or ”contaminate” the network performance results
this study aims to measure.

B. Pod Startup Latency

The pod startup latency was analyzed by parsing the times-
tamps from the 100 pod creation events for the aligned work-
loads. The results demonstrate the high operational efficiency
of the KND model.

TABLE I
POD STARTUP LATENCY PERCENTILES

Percentile Startup Latency (s)
P50 (Median) 1.8
P90 2.1
P99 2.3

C. Network Performance Results

The comparison between the aligned and unaligned config-
urations reveals a dramatic performance difference (Figures 8
and 9). Including the standard deviation (StdDev) in our results
highlights the performance instability caused by the random
GPU assignment in the unaligned case, which is a critical
finding of this work.

The results are conclusive. The aligned configuration not
only achieves significantly higher mean throughput, but also

TABLE II
NCCL ALL-GATHER BUS BANDWIDTH SUMMARY (GB/S)

Message Size Aligned (Mean ± StdDev) Unaligned (Mean ± StdDev)
64 KB 1.29 (± 0.02) 1.16 (± 0.06)
1 MB 11.42 (± 0.19) 8.98 (± 0.95)
8 GB 46.59 (± 0.03) 29.20 (± 5.62)

TABLE III
NCCL ALL-REDUCE BUS BANDWIDTH SUMMARY (GB/S)

Message Size Aligned (Mean ± StdDev) Unaligned (Mean ± StdDev)
64 KB 1.53 (± 0.03) 1.21 (± 0.11)
1 MB 14.11 (± 0.13) 10.39 (± 2.60)
8 GB 46.93 (± 0.04) 29.68 (± 6.74)

exhibits dramatically lower variance. Conversely, the un-
aligned configuration suffers from both lower average perfor-
mance and high variance, reflecting the ”lottery” of whether
the randomly assigned GPU happened to be on the correct PCI
root. This instability makes performance unpredictable and is
unacceptable for production HPC and AI workloads.

VI. DISCUSSION

Our experiments clearly demonstrate that topological align-
ment between GPUs and NICs, enabled by the KND model,
yields a significant performance increase, boosting bus band-
width by up to 59.6% in our all gather tests and a 58.1%
in our all reduce tests. These results confirm our hypothesis
that the lack of topological awareness in traditional device
management models is a primary source of performance
bottlenecks in distributed workloads on Kubernetes.

The significance of these findings is fourfold:
1) Quantifiable Performance Impact: We have quantified

the substantial performance penalty of suboptimal hard-
ware placement.

2) Architectural Simplification: The KND model pro-
vides a robust, simplified, and operationally superior
mechanism for achieving this performance.

3) A Foundation for Broader High-Performance Appli-
cations: The principles demonstrated here extend far be-
yond GPU workloads. The ability to expose qualitative
attributes like NUMA node is critical for other latency-
sensitive domains, most notably telecommunications.
For Network Functions Virtualization (NFV) workloads,
ensuring that a VNF’s vCPUs, its memory, and the
physical NIC it uses all reside on the same NUMA node
is paramount. CPU pinning, combined with NUMA
alignment, is a known strategy for reducing jitter and
achieving the deterministic, low-latency performance
that these applications require.

4) Operational and Hardware Efficiency: The pod
startup latencies in the order of a few seconds enabled
by this model offer a profound efficiency gain when
contrasted with traditional infrastructure management.
Provisioning new virtual machines to satisfy specific
hardware topologies is a slow process, often on the order
of minutes. This approach drastically improves hardware



utilization and reuse, as the same underlying nodes
can serve different workload profiles without requiring
administrators to perform slow, manual infrastructure
changes.

VII. FUTURE WORK

The KND model provides a flexible and extensible foun-
dation for a new generation of networking capabilities in
Kubernetes. Rather than extending the model itself, our future
work will focus on fostering the ecosystem of drivers that
this new paradigm enables, proceeding along several parallel
tracks:

1) Scalability and Hardware Efficiency: We will first
address the limitations of the current study by eval-
uating the performance of topologically aligned re-
sources on larger clusters. Beyond simple scaling, we
will investigate the hardware efficiency improvements
enabled by scale-out deployment patterns. This research
will explore how the KND model facilitates breaking
down monolithic, resource-intensive jobs into smaller,
concurrent pods. By enabling fine-grained, topology-
aware allocation of resources (e.g., assigning four pods
with two GPUs each versus one pod with eight GPUs
on a single node), we hypothesize that overall cluster
throughput and hardware utilization can be significantly
increased, providing a more cost-effective approach for
large-scale AI and HPC environments.

2) An Interoperable Ecosystem for Telco and Advanced
Networking: The KND model is uniquely positioned
to address the complex demands of telecommunications
workloads. Our future work will focus on enabling a
”galaxy” of independent, composable drivers that cater
to this domain on two distinct fronts:

• Data Plane Optimization: Building on the model’s
ability to expose NUMA data, we will enhance
DraNet to support explicit CPU pinning strategies.
A future driver could allow a ResourceClaim to
request not only a NIC on a specific NUMA node
but also to pin the pod’s workload threads to the
CPU cores on that same node, providing a fully
aligned, high-performance data path.

• Control Plane and Service Integration: The
model’s true power lies in managing abstract ser-
vices. We envision specialized drivers emerging that
manage complex carrier-grade network protocols.
For instance, a driver could advertise connectivity
to MPLS or SRv6 VPNs, or even to specific slices
of a 5G Radio Access Network (RAN). A user could
then claim ”access to the 5G core network slice,”
and that driver would perform the necessary BGP
peering, route leaking, or protocol-specific setup to
connect the application.

Crucially, this ecosystem of independent drivers can be
coordinated through standardized APIs. The ongoing
work in KEP-4817 [20] to standardize the network

data reported in the ResourceClaim status is the key
enabler for this interoperability. By ensuring all drivers
report allocated interface details in a common format,
it becomes possible for different network drivers to be
composed together, fulfilling the ultimate vision of a
truly network-aware, cloud-native ecosystem.

VIII. CONCLUSION

The traditional methods for managing high-performance
networking in Kubernetes are fraught with operational com-
plexity and lack the expressiveness needed for modern,
topology-sensitive hardware. The Kubernetes Network Driver
(KND) model, built on the foundational APIs of DRA and
NRI, offers a path forward. Our reference implementation,
DraNet, demonstrates the tangible benefits of this model. It
simplifies the deployment of RDMA networking and, most
importantly, enables performance-aware scheduling by expos-
ing crucial hardware topology attributes to Kubernetes. Our
experiments quantitatively prove that this architectural shift
translates directly into significant performance gains for real-
world distributed workloads. By embracing a truly cloud-
native approach to resource management, the KND model
paves the way for the next generation of high-performance
computing on Kubernetes.
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